1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
|
/*
* random.c -- A strong random number generator
*
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
*
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* (now, with legal B.S. out of the way.....)
* This routine gathers environmental noise from device drivers, etc.,
* and returns good randomly distributed numbers, suitable for
* cryptographic use. Besides the obvious cryptographic uses, these
* numbers are also good for seeding TCP sequence numbers, and other
* places where it is desirable to have numbers which are not only
* random, but hard to predict by an attacker.
* Theory of operation
* ===================
* Computers are very predictable devices. Hence it is extremely hard
* to implement a truly random distribution on a computer --- as
* opposed to a pseudo-random distribution, which can easily
* implemented by an algorithm. Unfortunately, it is sometimes
* possible for attackers to guess the output sequence of
* pseudo-random generators, and for some applications this is not
* acceptable. So instead, we must try to gather "noise" from the
* computer's environment, i.e. signals that contain an element of
* actual entropy, and that are hard for outside attackers to observe,
* and use that to generate randomly-distributed numbers.
* Environmental sources that are available to the kernel include
* inter-keyboard timings, inter-interrupt timings from some
* interrupts, and similar events. Again, these must be both (a)
* non-deterministic and (b) hard for an outside observer to measure.
* Operation of this device is centered on four "pools". The four
* pools are similar in structure but serve different purposes.
*/
/*
* Here is a block diagram:
*
* fast fast
* events --> pool --\ input /------------> /dev/random
* --> pool --
* slower, larger / \ PRNG
* events ----------/ \--> pool --> /dev/urandom
*/
/*
* The fast pool is similar in function to the input pool, as
* described below. It handles events that occur frequently but
* contain little entropy. It is fast enough that the overhead of
* doing it on every interrupt is affordable. It is similar in
* structure to the input pool, but much smaller. After accumulating
* a modest amount of entropy, it passes the entropy on to the input
* pool.
* The input pool is serves as a concentrator, mixer, and storage
* area. The entropy that is available as input to the input pool
* commonly has an entropy density of much less than 8 bits per byte.
* This is mixed into the input pool, which is mixed using a CRC-like
* function. The mixing is not cryptographically strong, but should
* be adequate if the randomness is not chosen maliciously. As bytes
* are mixed into this pool, the routines keep an *estimate* of how
* many bits of entropy are contained in the pool.
* When randomly-distributed bytes are desired, they can be extracted
* from the input pool by taking the SHA1 hash of the pool contents.
* This avoids exposing the internal state of the pool. It is
* believed to be computationally infeasible to derive any useful
* information about the input of SHA1 from its output. Even if it is
* possible to analyze SHA1 in some clever way, as long as the amount
* of data extracted in this way is less than the entropy content of
* the the input pool, the extracted data is totally unpredictable.
* For this reason, the routine decreases its internal estimate of how
* many bits of "true randomness" (aka entropy) are contained in the
* input pool whenever data is extracted.
* The devrandom pool (if any) is associated with /dev/random. It is
* similar in structure to the input pool, but its purpose is
* different. Its input comes from the input pool, which means the
* the entropy density is high (8 bits per byte), so no concentration
* or mixing is necessary. Therefore this pool serves primarily as a
* fifo. If the amount of entropy stored in the devrandom pool is
* insufficient to meet the demand, and no more entropy can be pulled
* from the input pool, any read to /dev/random will block.
* The PRNG pool is associated with the /dev/urandom device, and with
* the get_random_bytes() function used by the kernel internally.
* This pool is similar in structure, but its function is quite
* different from the other pools. It functions primarily as a PRNG
* i.e. pseudo ranomness generator. Specifically, it functions as
* hash function operated in counter mode. The PRNG is reseeded from
* time to time, using entropy from the input pool. An attacker may
* (at least in theory) be able to infer the future output of the PRNG
* from prior outputs. This requires successful cryptanalysis of SHA,
* which is not believed to be feasible, but there is a remote
* possibility. Nonetheless, a pseudorandom distribution of numbers
* should be useful for a wide range of purposes.
* Low-entropy case; startup transient
* ===================================
* The following applies to the input pool.
* Scenario #1: Suppose the pool starts out with all zeros, or in some
* other state that the attacker knows or could readily guess. This
* is a definite possibility immediately after startup. If we add N=8
* bits of entropy to the pool and then extract one 8-bit byte, that
* byte will have an entropy of approximately 7.18 bits, as can be
* verified by Monte Carlo integration over the ensemble. That is an
* entropy density of just under 90%, which we consider too low.
* Scenario #2: Same as above, except that we load 18 bits before
* extracting the first byte. In other words, there is 10 bits of
* /margin/. Then the first byte will contain 7.99935 bits. That is
* an entropy density of 99.992%, which should be acceptable for a
* wide range of purposes.
* The idea of margin extends to larger N. Let's keep the margin at
* 10 bits. If we load 16+10 = 26 bits into the pool before
* extracting the first two bytes, the output entropy will be
* approximately 15.9993 bits. The entropy density will be
* approximately 99.996%. Again, you can verify this by Monte Carlo
* integration over the ensemble.
* The margin is easily implemented by initializing the entropy_count
* of the input pool to a negative number.
* Strategy for reseeding the PRNG
* ===============================
*
* There are a lot of things in this world that depend on adaptive
* load-balancing and resource-sharing. Examples include:
*
* a) The "invisible hand" of microeconomics. If a resource is
* plentiful it will be cheap, and everybody can use it. If/when the
* resource is scare, the price goes up, and only those who really
* need it will pay for it.
*
* b) The "exponential backoff" algorithm used for the Ethernet
* layer-1 CSMA/CD. http://en.wikipedia.org/wiki/Exponential_backoff
*
* c) The rate of TCP retries, which is another example of exponential
* backoff. http://www.pcvr.nl/tcpip/tcp_time.htm
*
* So, the idea is that if entropy is plentiful, the PRNG can reseed
* itself relatively often. If entropy is not plentiful, the PRNG
* should wait longer between reseedings. The number of bits delivered
* by the PRNG between reseedings is an exponential function of how far
* the input pool is below its ceiling. That's the concept. The
* implementation goes about it in a somewhat backward way, because it
* is implemented on top of the existing "rsvd" mechanism, and usually
* it is better to use the existing mechanism whenever possible. So,
* if the PRNG has been reseeded recently, it uses a large reserve
* ("rsvd"). If it has not been reseeded in a long time, the reserve
* goes down, eventually down all the way to zero.
*
* The intent is that other processes that need entropy from
* /dev/random will play by the same rules. That is, when entropy is
* scarce they will use it more sparingly. This mechanism is voluntary
* not mandatory, but voluntary load- balancing is better than none at
* all.
* Exported interfaces ---- output
* ===============================
*
* There are three exported interfaces; the first is one designed to
* be used from within the kernel:
*
* void get_random_bytes(void *buf, int nbytes);
*
* This interface will return the requested number of bytes, and place
* it them the requested buffer.
* The two other interfaces are two character devices /dev/random and
* /dev/urandom. /dev/random is suitable for use when very high
* quality randomness is desired (for example, for key generation or
* one-time pads), as it will only return a maximum of the number of
* bits of randomness on hand (as estimated by the random number
* generator).
* The /dev/urandom device will never block, and will return as many
* bytes as are requested. It is a PRNG. It is reseeded from time to
* time. The resulting distribution of numbers is cryptographically
* strong, but not in principle unbreakable. For many applications,
* however, this is acceptable.
* Exported interfaces ---- input
* ==============================
*
* The current exported interfaces for gathering environmental noise
* from the devices are:
*
* void add_device_randomness(const void *buf, unsigned int size);
* void add_input_randomness(unsigned int type, unsigned int code,
* unsigned int value);
* void add_interrupt_randomness(int irq, int irq_flags);
* void add_disk_randomness(struct gendisk *disk);
*
* add_device_randomness() is for adding data to the random pool that
* is likely to differ between two devices (or possibly even per boot).
* This would be things like MAC addresses or serial numbers, or the
* read-out of the RTC. This does *not* add any actual entropy to the
* pool, but it initializes the pool to different values for devices
* that might otherwise be identical and have very little entropy
* available to them (particularly common in the embedded world).
*
* add_input_randomness() uses the input layer interrupt timing, as well as
* the event type information from the hardware.
*
* add_interrupt_randomness() uses the interrupt timing as random
* inputs to the fast pool. Using the cycle counters and the irq source
* as inputs, it feeds the randomness roughly once a second.
*
* add_disk_randomness() uses what amounts to the seek time of block
* layer request events, on a per-disk_devt basis, as input to the
* fast pool. Note that high-speed solid state drives with very low
* seek times do not make for good sources of entropy, as their seek
* times are usually fairly consistent.
*
* All of these routines try to estimate how many bits of randomness a
* particular randomness source. They do this by keeping track of the
* first and second order deltas of the event timings.
* Exported interfaces ---- sysctl
* ===============================
* files in /proc/sys/kernel/random :
* .../poolsize (read only) -- reports the size of the input pool. Since
* 2.6.12 this is measured in bits. Previously it was measured in
* bytes. Note that the devrandom pool and the prng pool are 4x
* smaller than the input pool.
* .../entropy_avail (read only) -- reports the total amount of stored
* entropy, measured in bits. This includes entropy stored in both
* the input pool and the devrandom pool.
* .../entropy_avail_input .../entropy_avail_random
* .../entropy_avail_urandom (r/w) -- same as above, but report the
* content of each pool separately
* .../extracted_total_input .../extracted_total_random
* .../extracted_total_urandom (r/w) -- report the total number of
* bits of randomness extracted from the pool since the start of
* operation.
* .../extracted_subttl_input .../extracted_subttl_random
* .../extracted_subttl_urandom (r/w) -- report the number of bits of
* randomness extracted from the pool since the last time it was
* reseeded. This is particularly significant for /dev/urandom
* Exported interfaces ---- ioctl
* ===============================
*** FIXME
**?? There may be older programs out there that write to
/dev/random and then do ioctl(RNDADDTOENTCNT...); this
is guaranteed to fail insidiously, since writing
to /dev/random does nothing to the input pool.
* Ensuring unpredictability at system startup
* ============================================
*
* When any operating system starts up, it will go through a sequence
* of actions that are fairly predictable by an adversary, especially
* if the start-up does not involve interaction with a human operator.
* There is likely to be virtually zero real entropy available.
* However, we still need the /dev/urandom and get_random_bytes()
* interfaces to be usable at startup, and to have some semblance of
* security. Therefore, it helps to store a seed that can be used to
* re-seed the PRNG, and to carry this seed across shut-downs and
* start-ups. To do this, put the following lines an appropriate
* script which is run during the boot sequence:
* The byte count of 512 a factor of 4 more than is needed to reseed
* the PRNG. It is just right for reseeding the input pool, but one
* could argue that it doesn't need to be reseeded at all. We
* preserve the 512 recommendation because it is traditional, because
* it is mostly harmless, and because it might come in handy at some
* point in the future.
* echo "Initializing random number generator..."
* random_seed=/var/run/random-seed
* # Carry a random seed from start-up to start-up
* # Load the input pool:
* if [ -f $random_seed ]; then
* cat $random_seed >/dev/urandom
* else
* touch $random_seed
* fi
* chmod 600 $random_seed
* # Save enough to reseed (differently!) next time:
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* and the following lines in an appropriate script which is run as
* the system is shutdown:
*
* # Carry a random seed from shut-down to start-up
* # Save enough reseed the input pool.
* echo "Saving random seed..."
* random_seed=/var/run/random-seed
* touch $random_seed
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
* For example, on most modern systems using the System V init
* scripts, such code fragments would be found in
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
* Effectively, these commands save a pseudorandomly-distribted seed
* and then use that to initialize the prng pool -- and the input
* pool -- at the next start-up. (The seed is saved by the bootup
* script, not only by the shutdown script, to make sure that
* /etc/random-seed is never re-used. It must be different for every
* start-up, even if the system crashes without executing rc.0.) Even
* with complete knowledge of the start-up activities, predicting the
* state of the output pools requires knowledge of the previous
* history of the system.
* Note that writing to /dev/urandom affects only the input pool
* and prng pool (not the fast pool).
* Writing to /dev/random is identical to writing to /dev/urandom.
* Configuring the /dev/random driver under Linux
* ==============================================
*
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
* the /dev/mem major number (#1). So if your system does not have
* /dev/random and /dev/urandom created already, they can be created
* by using the commands:
*
* mknod /dev/random c 1 8
* mknod /dev/urandom c 1 9
*
* Acknowledgements:
* =================
*
* Ideas for constructing this random number generator were derived
* from Pretty Good Privacy's random number generator, and from private
* discussions with Phil Karn. Colin Plumb provided a faster random
* number generator, which speed up the mixing function of the entropy
* pool, taken from PGPfone. Dale Worley has also contributed many
* useful ideas and suggestions to improve this driver.
*
* Any flaws in the design are solely my responsibility, and should
* not be attributed to the Phil, Colin, or any of authors of PGP.
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
* Eastlake, Steve Crocker, and Jeff Schiller.
*/
// TODO: Scatter/gather, to reduce the number of files under /proc.
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/cryptohash.h>
#include <linux/fips.h>
#include <linux/ptrace.h>
#include <linux/kmemcheck.h>
#ifdef CONFIG_GENERIC_HARDIRQS
# include <linux/irq.h>
#endif
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/io.h>
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>
/*
* Configuration information.
* Here, a "word" is of type __u32
*/
#define INPUT_POOL_WORDS 128
#define OUTPUT_POOL_WORDS 32
#define SEC_XFER_SIZE 512
#define EXTRACT_SIZE 10
#ifdef OVERCOMPLICATED
/* Three fills of size BUFFILL_ZONE would be more than enough
* to fill the output buffer */
# define BUFFILL_ZONE 400 /* measured in bits */
#endif
/* Choose 160 bits. Seems reasonable. Recommended in the Yarrow paper. */
#define RESEED_BATCH 160 /* bits */
#define FIRST_RESEED 18 /* dimensionless log(ratio) */
#define MIN_DILUTION 1000 /* bits, approximately */
#define APP_MAX 20 /* dimensionless # steps */
/*
* We design for MIN_DILUTION=1000 approximately. We get 819 exactly,
* because FIRST_RESEED has to be rounded to an integer.
*
* The dilution factor ranges from 819 to 1 (at appetite=0) to 819<<20
* i.e. 858,993,459 to 1 (at appetite=20) ... assuming APP_MAX == 20.
*/
#if RESEED_BATCH*MIN_DILUTION < 1<<(FIRST_RESEED-1) \
|| RESEED_BATCH*MIN_DILUTION >= 1<<(FIRST_RESEED)
# error Inconsistent values of FIRST_RESEED and RESEED_BATCH*MIN_DILUTION
#endif
/* Saturation point of extraction subttl counters; large round number: */
#define SUBTTL_SAT 1000000000000000000LL
#if SUBTTL_SAT <= RESEED_BATCH<<(FIRST_RESEED + APP_MAX)
# error Bogus value for SUBTTL_SAT
#endif
typedef unsigned long long int ulonglong;
#if defined __SIZEOF_LONG_LONG__ && __SIZEOF_LONG_LONG__ == 8
/* This is how we expect things to be when using gcc
* on both Intel x86_32 and Intel 64 architectures.
* I don't know how to extrapolate to other architectures
* or other compilers ...
* but at least we are being clear about the assumptions being made.
*/
#else
#error Broken assumption: __SIZEOF_LONG_LONG__ should be defined and equal to 8
#endif
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
#define W2BYTE(X) ((X)*4) /* convert #words to #bytes */
#define W2BIT(X) ((X)*32) /* convert #words to #bits */
#define BIT2BYTE(X) ((X)/8) /* convert #bits to #bytes */
#define BYTE2BIT(X) ((X)*8) /* convert #bytes to #bits */
/*
* The minimum number of bits of entropy before we wake up a read on
* /dev/random.
* Can be changed at runtime via /proc/.
* The minimum value is RESEED_BATCH; enforced at runtime.
*/
static int random_read_wakeup_thresh = RESEED_BATCH;
/*
* If the entropy count falls under this number of bits, then we
* should wake up processes which are selecting or polling on write
* access to /dev/random.
*/
static int random_write_wakeup_thresh = 128;
/*
* When the input pool goes over trickle_thresh, start dropping most
* samples to avoid wasting CPU time and reduce lock contention.
*/
static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
static DEFINE_PER_CPU(int, trickle_count);
/*
* A pool of size .poolwords is stirred with a primitive polynomial
* of degree .poolwords over GF(2). The taps for various sizes are
* defined below. They are chosen to be evenly spaced (minimum RMS
* distance from evenly spaced; the numbers in the comments are a
* scaled squared error sum) except for the last tap, which is 1 to
* get the twisting happening as fast as possible.
*/
static struct poolinfo {
int poolwords;
int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
{ 128, 103, 76, 51, 25, 1 },
/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
{ 32, 26, 20, 14, 7, 1 },
#if 0
/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
{ 2048, 1638, 1231, 819, 411, 1 },
/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
{ 1024, 817, 615, 412, 204, 1 },
/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
{ 1024, 819, 616, 410, 207, 2 },
/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
{ 512, 411, 308, 208, 104, 1 },
/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
{ 512, 409, 307, 206, 102, 2 },
/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
{ 512, 409, 309, 205, 103, 2 },
/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
{ 256, 205, 155, 101, 52, 1 },
/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
{ 128, 103, 78, 51, 27, 2 },
/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
{ 64, 52, 39, 26, 14, 1 },
#endif
};
#define POOLBITS poolwords*32
#define POOLBYTES poolwords*4
/*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a twisted Generalized Feedback Shift Reigster
*
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
* Transactions on Modeling and Computer Simulation 2(3):179-194.
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
* II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
*
* Thanks to Colin Plumb for suggesting this.
*
* We have not analyzed the resultant polynomial to prove it primitive;
* in fact it almost certainly isn't. Nonetheless, the irreducible factors
* of a random large-degree polynomial over GF(2) are more than large enough
* that periodicity is not a concern.
* The input hash is much less sensitive than the output hash. All
* that we want of it is that it be a good hash in the sense that it
* not produce collisions when fed "random" data of the sort we expect
* to see. It need not be a cryptographically-strong hash. As long
* as the pool state differs for different inputs, we have preserved
* the input entropy and done a good job. The fact that an
* intelligent attacker can construct inputs that will produce
* controlled alterations to the pool's state is not important because
* we don't consider such inputs to contribute any randomness. The
* only property we need with respect to them is that the attacker
* can't increase his/her knowledge of the pool's state. Since all
* additions are reversible (knowing the final state and the input,
* you can reconstruct the initial state), if an attacker has any
* uncertainty about the initial state, he/she can only shuffle that
* uncertainty about, but never cause any collisions (which would
* decrease the uncertainty).
* The chosen system lets the state of the pool be (essentially) the input
* modulo the generator polymnomial. Now, for random primitive polynomials,
* this is a universal class of hash functions, meaning that the chance
* of a collision is limited by the attacker's knowledge of the generator
* polynomial, so if it is chosen at random, an attacker can never force
* a collision. Here, we use a fixed polynomial, but we *can* assume that
* ###--> it is unknown to the processes generating the input entropy. <-###
* Because of this important property, this is a good, collision-resistant
* hash; hash collisions will occur no more often than chance.
*/
/*
* Static global variables
*/
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
static struct fasync_struct *fasync;
static bool debug = 0;
module_param(debug, bool, 0644);
#define DEBUG_ENT(fmt, arg...) do { \
if (debug) \
printk(KERN_DEBUG "random %04d %04d %04d: " \
fmt,\
input_pool.entropy_count,\
devrand_pool.entropy_count,\
prng_pool.entropy_count,\
## arg); } while (0)
/**********************************************************************
*
* OS independent pool. Here are the functions which handle
* entropy storage, mixing, concentration, and PRNG counter mode.
*
**********************************************************************/
struct Pool {
/* read-only data: */
struct poolinfo *poolinfo;
__u32 *pooldata;
const char *name;
struct Pool *pull;
int blockable;
/* read-write data: */
spinlock_t lock;
unsigned add_ptr;
unsigned input_rotate;
int entropy_count;
int entropy_total; /* entropy input; used only during initialization */
ulonglong extracted_subttl;
ulonglong extracted_total;
unsigned int initialized:1;
bool last_data_init;
__u8 last_data[EXTRACT_SIZE];
};
static __u32 input_pool_data[INPUT_POOL_WORDS];
static __u32 prng_pool_data[OUTPUT_POOL_WORDS];
static struct Pool input_pool = {
.poolinfo = &poolinfo_table[0],
.name = "input",
.blockable = 1,
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
.entropy_count = -10,
.pooldata = input_pool_data
};
#define devrand_pool input_pool
static struct Pool prng_pool = {
.poolinfo = &poolinfo_table[1],
.name = "nonblocking",
.pull = &input_pool,
.lock = __SPIN_LOCK_UNLOCKED(prng_pool.lock),
.pooldata = prng_pool_data
};
static __u32 const twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
/*
* This function adds bytes into the entropy "pool". It does not
* update the entropy estimate. The caller should call
* credit_entropy_bits if this is appropriate.
*
* The pool is stirred with a primitive polynomial of the appropriate
* degree, and then twisted. We twist by three bits at a time because
* it's cheap to do so and helps slightly in the expected case where
* the entropy is concentrated in the low-order bits.
*/
static void _mix_pool_bytes(struct Pool *r, const void *in,
int nbytes, __u8 out[64])
{
unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
int input_rotate;
int wordmask = r->poolinfo->poolwords - 1;
const char *bytes = in;
__u32 w;
tap1 = r->poolinfo->tap1;
tap2 = r->poolinfo->tap2;
tap3 = r->poolinfo->tap3;
tap4 = r->poolinfo->tap4;
tap5 = r->poolinfo->tap5;
smp_rmb();
input_rotate = ACCESS_ONCE(r->input_rotate);
i = ACCESS_ONCE(r->add_ptr);
/* mix one byte at a time to simplify size handling and churn faster */
while (nbytes--) {
w = rol32(*bytes++, input_rotate & 31);
i = (i - 1) & wordmask;
/* XOR in the various taps */
w ^= r->pooldata[i];
w ^= r->pooldata[(i + tap1) & wordmask];
w ^= r->pooldata[(i + tap2) & wordmask];
w ^= r->pooldata[(i + tap3) & wordmask];
w ^= r->pooldata[(i + tap4) & wordmask];
w ^= r->pooldata[(i + tap5) & wordmask];
/* Mix the result back in with a twist */
r->pooldata[i] = (w >> 3) ^ twist_table[w & 7];
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
input_rotate += i ? 7 : 14;
}
ACCESS_ONCE(r->input_rotate) = input_rotate;
ACCESS_ONCE(r->add_ptr) = i;
smp_wmb();
if (out)
for (j = 0; j < 16; j++)
((__u32 *)out)[j] = r->pooldata[(i - j) & wordmask];
}
static void __mix_pool_bytes(struct Pool *r, const void *in,
int nbytes, __u8 out[64])
{
trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
_mix_pool_bytes(r, in, nbytes, out);
}
static void mix_pool_bytes(struct Pool *r, const void *in,
int nbytes, __u8 out[64])
{
unsigned long flags;
trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
spin_lock_irqsave(&r->lock, flags);
_mix_pool_bytes(r, in, nbytes, out);
spin_unlock_irqrestore(&r->lock, flags);
}
struct fast_pool {
__u32 pooldata[4];
unsigned long last;
unsigned short count;
unsigned char rotate;
unsigned char last_timer_intr;
};
/*
* This is a fast mixing routine used by the interrupt randomness
* collector. It's hardcoded for an 128 bit pool and assumes that any
* locks that might be needed are taken by the caller.
*/
static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
{
const char *bytes = in;
__u32 w;
unsigned i = f->count;
unsigned input_rotate = f->rotate;
while (nbytes--) {
w = rol32(*bytes++, input_rotate & 31) ^ f->pooldata[i & 3] ^
f->pooldata[(i + 1) & 3];
f->pooldata[i & 3] = (w >> 3) ^ twist_table[w & 7];
input_rotate += (i++ & 3) ? 7 : 14;
}
f->count = i;
f->rotate = input_rotate;
}
/*
* Credit the pool with n bits of entropy.
* Normally n is positive.
* Sufficiently large n will wake up a blocked reader.
* Negative n values are allowed, but the resulting behavior
* might not be what you wanted.
*/
static void credit_entropy_bits(struct Pool *r, int nbits)
{
int entropy_count, orig;
if (!nbits)
return;
DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
retry:
entropy_count = orig = ACCESS_ONCE(r->entropy_count);
entropy_count += nbits;
if (entropy_count < 0) {
DEBUG_ENT("negative entropy/overflow\n");
entropy_count = 0;
} else if (entropy_count > r->poolinfo->POOLBITS)
entropy_count = r->poolinfo->POOLBITS;
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
goto retry;
if (!r->initialized && nbits > 0) {
r->entropy_total += nbits;
if (r->entropy_total > 128)
r->initialized = 1;
}
trace_credit_entropy_bits(r->name, nbits, entropy_count,
r->entropy_total, _RET_IP_);
/* should we wake readers? */
if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
wake_up_interruptible(&random_read_wait);
kill_fasync(&fasync, SIGIO, POLL_IN);
}
}
/*********************************************************************
*
* Entropy input management
*
*********************************************************************/
/* There is one of these per entropy source */
struct timer_rand_state {
cycles_t last_time;
long last_delta, last_delta2;
unsigned dont_count_entropy:1;
};
/*
* Add device- or boot-specific data to the input and nonblocking
* pools to help initialize them to unique values.
*
* None of this adds any entropy, it is meant to avoid the
* problem of the prng pool having similar initial state
* across largely identical devices.
*/
void add_device_randomness(const void *buf, unsigned int size)
{
unsigned long time = get_cycles() ^ jiffies;
mix_pool_bytes(&input_pool, buf, size, NULL);
mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
mix_pool_bytes(&prng_pool, buf, size, NULL);
mix_pool_bytes(&prng_pool, &time, sizeof(time), NULL);
}
EXPORT_SYMBOL(add_device_randomness);
static struct timer_rand_state input_timer_state;
/*
* This function adds entropy to the input pool by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
*
*/
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
struct {
long jiffies;
unsigned cycles;
unsigned num;
} sample;
long delta, delta2, delta3;
preempt_disable();
/* if over the trickle threshold, use only 1 in 4096 samples */
if (input_pool.entropy_count > trickle_thresh &&
((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
goto out;
sample.jiffies = jiffies;
sample.cycles = get_cycles();
sample.num = num;
mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
if (!state->dont_count_entropy) {
delta = sample.jiffies - state->last_time;
state->last_time = sample.jiffies;
delta2 = delta - state->last_delta;
state->last_delta = delta;
delta3 = delta2 - state->last_delta2;
state->last_delta2 = delta2;
if (delta < 0)
delta = -delta;
if (delta2 < 0)
delta2 = -delta2;
if (delta3 < 0)
delta3 = -delta3;
if (delta > delta2)
delta = delta2;
if (delta > delta3)
delta = delta3;
/*
* delta is now minimum absolute delta.
* Round down by 1 bit on general principles,
* and limit entropy entimate to 12 bits.
*/
credit_entropy_bits(&input_pool,
min_t(int, fls(delta>>1), 11));
}
out:
preempt_enable();
}
void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value)
{
static unsigned char last_value;
/* ignore autorepeat and the like */
if (value == last_value)
return;
DEBUG_ENT("input event\n");
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
void add_interrupt_randomness(int irq, int irq_flags)
{
struct Pool *r;
struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
struct pt_regs *regs = get_irq_regs();
unsigned long now = jiffies;
__u32 input[4], cycles = get_cycles();
input[0] = cycles ^ jiffies;
input[1] = irq;
if (regs) {
__u64 ip = instruction_pointer(regs);
input[2] = ip;
input[3] = ip >> 32;
}
fast_mix(fast_pool, input, sizeof(input));
if ((fast_pool->count & 1023) &&
!time_after(now, fast_pool->last + HZ))
return;
fast_pool->last = now;
r = prng_pool.initialized ? &input_pool : &prng_pool;
__mix_pool_bytes(r, &fast_pool->pooldata, sizeof(fast_pool->pooldata), NULL);
/*
* If we don't have a valid cycle counter, and we see
* back-to-back timer interrupts, then skip giving credit for
* any entropy.
*/
if (cycles == 0) {
if (irq_flags & __IRQF_TIMER) {
if (fast_pool->last_timer_intr)
return;
fast_pool->last_timer_intr = 1;
} else
fast_pool->last_timer_intr = 0;
}
credit_entropy_bits(r, 1);
}
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
if (!disk || !disk->random)
return;
/* first major is 1, so we get >= 0x200 here */
DEBUG_ENT("disk event %d:%d\n",
MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
#endif
/*********************************************************************
*
* Extraction routines.
* These routines extract bytes from the pools. The extracted bytes
* exhibit a random distribution, possibly "random" in the sense of
* pseudorandom, or possibly "random" in the sense of actual entropy.
* Since the latter is not guaranteed, please do not call them
* "entropy" extraction routines.
* Specifically, in the case of the PRNG, i.e. the prng pool,
* the extracted bytes may have an entropy density that is vastly less
* than 8 bits per byte, orders of magnitude less.
* ********************************************************************/
/* Forward reference */
static ssize_t extract_rnd(struct Pool *r, void *buf,
size_t nbytes, int min, int rsvd);
/*
* This function is responsible for filling this pool (r)
* to an appropriate level, by pulling from the upstream
* pool (r->pull), if any, if necessary.
*
* We enforce the requirement that any contribution to the
* nonblocking PRNG be large enough to be "significant" to any attacker.
*
* In principle, this would cascade, pulling from other pools
* even farther upstream, but as it stands there are only two
* pools, so no cascade.
*
* It is conceivable that the caller's want_level could exceed
* POOL_BYTES, and this would not be ridiculous.
* Mild fixme: Handling of this case needs more thought.
*/
static void fill_pool(
struct Pool *r,
size_t want_level /* measured in BYTES */
){
__u32 tmp[OUTPUT_POOL_WORDS];
int rsvd = 0; /* measured in bits */
int mybatch = 0;
int txbits;
int actual; /* measured in BYTES */
if (!r->pull) return; /* no upstream pool to pull from */
if (r->blockable) {
#ifndef OVERCOMPLICATED
/* should never get here; devrandom pool has nowhere to pull from */
#else
/* Here if we are blockable i.e. /dev/random i.e. TRNG. */
/* How much _unfilled_ headspace is our buffer: */
int ourhead = r->poolinfo->POOLBITS
- r->entropy_count;
/* Ditto for the upstream source: */
int pullhead = r->pull->poolinfo->POOLBITS
- r->pull->entropy_count;
/* The more the source is unfilled, the less we can buffill */
int buffill = BUFFILL_ZONE - pullhead;
/* Don't buffill more than needed to fill our headspace: */
buffill = min_t(int, buffill, headspace);
/* Number of bits to transfer: */
txbits = BYTE2BIT(want_level) - r->entropy_count;
/*
* Transfer enough to meet the requested level,
* or buffill with whatever is freely available,
* whichever is more:
*/
txbits = max_t(int, txbits, buffill);
if (txbits <= 0) return; /* already have all we want */
mybatch = rsvd = 0;
#endif
} else {
/*
* Here if we are non-blocking i.e. urandom i.e. PRNG. Reserve a
* suitable amount of entropy in the upstream source, on a sliding
* scale based on how desperately we need to be reseeded.
*
* Ignore the caller's want_level. Entropy level doesn't mean much
* for a PRNG. The only amount the PRNG ever requests is RESEED_BATCH.
*
*/
int appetite = fls64(r->extracted_subttl) - FIRST_RESEED;
if (appetite < 0) return; /* 128k bits maps to appetite 0 */
/* The largest rsvd that makes any sense;
* applies when appetite=0:
*/
rsvd = W2BIT(r->pull->poolinfo->poolwords) - RESEED_BATCH;
/* When the appetite gets to 20, rsvd goes to zero: */
rsvd = rsvd - appetite*rsvd / APP_MAX;
if (rsvd < 0) rsvd = 0;
/*
* For the PRNG, make the requested batch big enough to be
* "significant" to any attacker:
*/
mybatch = txbits = RESEED_BATCH;
}
/* Don't request more than fits in our buffer: */
txbits = min_t(int, txbits, 8*sizeof(tmp));
DEBUG_ENT("About to reseed %s adding %d bits;"
" caller want_level: %zu prev level: %d bits\n",
r->name, txbits,
want_level * 8, r->entropy_count);
DEBUG_ENT("Reseed batch: %d rsvd: %d bytes\n",
BIT2BYTE(mybatch), BIT2BYTE(rsvd));
if (txbits <= 0) return; /* already full enough */
actual = extract_rnd(r->pull, tmp, BIT2BYTE(txbits),
BIT2BYTE(mybatch), BIT2BYTE(rsvd));
mix_pool_bytes(r, tmp, actual, NULL);
credit_entropy_bits(r, actual*8);
/*
* The subtotal starts over every time we transfer a
* sufficiently-large batch. Super-important for PRNG;
* probably not significant for TRNG.
*/
if (BYTE2BIT(actual) >= RESEED_BATCH) {
r->extracted_subttl = 0;
}
}
/*
* General note, applying to several of the following routines:
*
* The /min/ parameter specifies the minimum amount we are allowed to pull;
* otherwise we pull nothing. The PRNG uses this when reseeding,
* to make sure the pull is "significant" to any attacker.
*
* The /reserved/ parameter indicates how much entropy we must leave
* in the pool after each pull to avoid starving other readers.
*/
/*
* Debit the entropy estimate for pool r.
* Usually done right before an extract_buf().
* The return value is the amount to extract.
*/
static size_t debit(struct Pool *r, size_t nbytes, int min,
int reserved)
{
unsigned long flags;
int wakeup_write = 0;
/* Hold lock while accounting */
spin_lock_irqsave(&r->lock, flags);
BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
DEBUG_ENT("trying to debit %zu bits from %s\n",
nbytes * 8, r->name);
/* If there's not enough available, don't extract anything. */
if (r->entropy_count / 8 < min + reserved) {
nbytes = 0;
} else {
int entropy_count, orig;
retry:
entropy_count = orig = ACCESS_ONCE(r->entropy_count);
/* If blockable, never pull more than available */
if (r->blockable && nbytes + reserved >= entropy_count / 8)
nbytes = entropy_count/8 - reserved;
if (entropy_count / 8 >= nbytes + reserved) {
entropy_count -= nbytes*8;
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
goto retry;
} else {
entropy_count = reserved;
if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
goto retry;
}
if (entropy_count < random_write_wakeup_thresh)
wakeup_write = 1;
}
DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
nbytes * 8, r->name, r->blockable ? "" : " (nonblocking)");
spin_unlock_irqrestore(&r->lock, flags);
if (wakeup_write) {
wake_up_interruptible(&random_write_wait);
kill_fasync(&fasync, SIGIO, POLL_OUT);
}
return nbytes;
}
/*
* Extract randomness from the specified pool (r) and return it in a buffer.
* Probably should always be preceded by debit(...).
*/
static void extract_buf(struct Pool *r, __u8 *out)
{
int i;
union {
__u32 w[5];
unsigned long l[LONGS(EXTRACT_SIZE)];
} hash;
__u32 workspace[SHA_WORKSPACE_WORDS];
__u8 extract[64];
unsigned long flags;
/* Generate a hash across the pool, 16 words (512 bits) at a time */
sha_init(hash.w);
spin_lock_irqsave(&r->lock, flags);
for (i = 0; i < r->poolinfo->poolwords; i += 16)
sha_transform(hash.w, (__u8 *)(r->pooldata + i), workspace);
/*
* We mix the hash back into the pool to prevent backtracking
* attacks (where the attacker knows the state of the pool
* plus the current outputs, and attempts to find previous
* ouputs), unless the hash function can be inverted. By
* mixing at least a SHA1 worth of hash data back, we make
* brute-forcing the feedback as hard as brute-forcing the
* hash.
*/
__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
spin_unlock_irqrestore(&r->lock, flags);
/*
* To avoid duplicates, we atomically extract a portion of the
* pool while mixing, and hash one final time.
*/
sha_transform(hash.w, extract, workspace);
memset(extract, 0, sizeof(extract));
memset(workspace, 0, sizeof(workspace));
/*
* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.
*/
hash.w[0] ^= hash.w[3];
hash.w[1] ^= hash.w[4];
hash.w[2] ^= rol32(hash.w[2], 16);
/*
* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
unsigned long v;
if (!arch_get_random_long(&v))
break;
hash.l[i] ^= v;
}
memcpy(out, &hash, EXTRACT_SIZE);
memset(&hash, 0, sizeof(hash));
}
/*
* Note: Here we assume that .poolwords is a multiple of 16 words.
*
* We return the actual number of bytes extracted.
*/
static ssize_t extract_rnd(struct Pool *r, void *buf,
size_t txbytes, int min, int reserved)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
unsigned long flags;
/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
if (fips_enabled) {
spin_lock_irqsave(&r->lock, flags);
if (!r->last_data_init) {
r->last_data_init = true;
spin_unlock_irqrestore(&r->lock, flags);
trace_extract_rnd(r->name, EXTRACT_SIZE,
r->entropy_count, _RET_IP_);
fill_pool(r, EXTRACT_SIZE);
/* FIXME: */
/* why is there no debit() associated with this extract_buf()? */
extract_buf(r, tmp);
spin_lock_irqsave(&r->lock, flags);
memcpy(r->last_data, tmp, EXTRACT_SIZE);
}
spin_unlock_irqrestore(&r->lock, flags);
}
trace_extract_rnd(r->name, txbytes, r->entropy_count, _RET_IP_);
/*
* We want our pool (r) to have enough entropy, if possible.
* So pull it up to a level (txbits) that will cover the
* extraction we are about to do.
*/
fill_pool(r, txbytes);
/* This pool (r) has already been credited for the fill-in we just did. */
/* Debit this pool for the extraction we are about to do. */
txbytes = debit(r, txbytes, min, reserved);
while (txbytes) {
extract_buf(r, tmp);
if (fips_enabled) {
spin_lock_irqsave(&r->lock, flags);
if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
panic("Hardware RNG duplicated output!\n");
memcpy(r->last_data, tmp, EXTRACT_SIZE);
spin_unlock_irqrestore(&r->lock, flags);
}
i = min_t(int, txbytes, EXTRACT_SIZE);
memcpy(buf, tmp, i);
txbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
if (ret > 0) {
/* Subttl does not overflow; it saturates at a user-friendly round number: */
r->extracted_subttl += BYTE2BIT(ret);
if (r->extracted_subttl > SUBTTL_SAT)
r->extracted_subttl = SUBTTL_SAT;
/* Total does not saturate; it just overflows and wraps around. */
r->extracted_total += BYTE2BIT(ret);
}
return ret;
}
static ssize_t extract_rnd_user(struct Pool *r, void __user *buf,
size_t nbytes)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
trace_extract_rnd_user(r->name, nbytes, r->entropy_count, _RET_IP_);
fill_pool(r, nbytes);
/* Debit the estimate, according to the extraction we are about to do: */
nbytes = debit(r, nbytes, 0, 0);
while (nbytes) {
if (need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
schedule();
}
extract_buf(r, tmp);
i = min_t(int, nbytes, EXTRACT_SIZE);
if (copy_to_user(buf, tmp, i)) {
ret = -EFAULT;
break;
}
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
if (ret > 0) {
r->extracted_subttl += BYTE2BIT(ret);
r->extracted_total += BYTE2BIT(ret);
}
return ret;
}
/*
* This function is the exported kernel interface. It returns some
* number of good pseudorandomly distributed numbers, suitable for key
* generation, seeding TCP sequence numbers, etc. It does not use the
* hw random number generator, if available; use
* get_random_bytes_arch() for that.
*/
void get_random_bytes(void *buf, int nbytes)
{
extract_rnd(&prng_pool, buf, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes);
/*
* This function will use the architecture-specific hardware random
* number generator if it is available. The arch-specific hw RNG will
* almost certainly be faster than what we can do in software, but it
* is impossible to verify that it is implemented securely (as
* opposed, to, say, the AES encryption of a sequence number using a
* key known by the NSA). So it's useful if we need the speed, but
* only if we're willing to trust the hardware manufacturer not to
* have put in a back door.
*/
void get_random_bytes_arch(void *buf, int nbytes)
{
char *p = buf;
trace_get_random_bytes(nbytes, _RET_IP_);
while (nbytes) {
unsigned long v;
int chunk = min(nbytes, (int)sizeof(unsigned long));
if (!arch_get_random_long(&v))
break;
memcpy(p, &v, chunk);
p += chunk;
nbytes -= chunk;
}
if (nbytes)
extract_rnd(&prng_pool, p, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes_arch);
/*
* init_std_data - initialize pool with system data
*
* @r: pool to initialize
*
* This function clears the pool's entropy count and mixes some system
* data into the pool to prepare it for use. The pool is not cleared
* as that can only decrease the entropy in the pool.
*/
static void init_std_data(struct Pool *r)
{
int i;
ktime_t now = ktime_get_real();
unsigned long rv;
r->entropy_count = 0;
r->entropy_total = 0;
r->extracted_subttl = 0;
r->extracted_total = 0;
r->last_data_init = false;
mix_pool_bytes(r, &now, sizeof(now), NULL);
for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
if (!arch_get_random_long(&rv))
break;
mix_pool_bytes(r, &rv, sizeof(rv), NULL);
}
mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
}
/*
* Note that setup_arch() may call add_device_randomness()
* long before we get here. This allows seeding of the pools
* with some platform dependent data very early in the boot
* process. But it limits our options here. We must use
* statically allocated structures that already have all
* initializations complete at compile time. We should also
* take care not to overwrite the precious per platform data
* we were given.
*/
static int rand_initialize(void)
{
init_std_data(&input_pool);
init_std_data(&devrand_pool);
init_std_data(&prng_pool);
return 0;
}
module_init(rand_initialize);
#ifdef CONFIG_BLOCK
void rand_initialize_disk(struct gendisk *disk)
{
struct timer_rand_state *state;
/*
* If kzalloc returns null, we just won't use that entropy
* source.
*/
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state)
disk->random = state;
}
#endif
/*
* Interface used by the actual /dev/random.
*
* This is the only place where the process can block.
* It blocks if /dev/random wants to read more bits than are available.
*/
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
ssize_t n, retval = 0, count = 0;
if (nbytes == 0){
return 0;
}
while (nbytes > 0) {
n = nbytes;
if (n > SEC_XFER_SIZE)
n = SEC_XFER_SIZE;
DEBUG_ENT("reading %zu bits\n", n*8);
n = extract_rnd_user(&devrand_pool, buf, n);
if (n < 0) {
retval = n;
break;
}
DEBUG_ENT("read got %zd bits (%zd still needed)\n",
n*8, (nbytes-n)*8);
if (n == 0) {
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
DEBUG_ENT("sleeping?\n");
wait_event_interruptible(random_read_wait,
input_pool.entropy_count >=
random_read_wakeup_thresh);
DEBUG_ENT("awake\n");
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
continue;
}
count += n;
buf += n;
nbytes -= n;
break; /* This break makes the device work */
/* like a named pipe */
}
return (count ? count : retval);
}
static ssize_t
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
return extract_rnd_user(&prng_pool, buf, nbytes);
}
static unsigned int
random_poll(struct file *file, poll_table * wait)
{
unsigned int mask;
poll_wait(file, &random_read_wait, wait);
poll_wait(file, &random_write_wait, wait);
mask = 0;
if (input_pool.entropy_count >= random_read_wakeup_thresh)
mask |= POLLIN | POLLRDNORM;
if (input_pool.entropy_count < random_write_wakeup_thresh)
mask |= POLLOUT | POLLWRNORM;
return mask;
}
static int
write_pool(struct Pool *r, const char __user *buffer, size_t count)
{
size_t bytes;
__u32 buf[16];
const char __user *p = buffer;
while (count > 0) {
bytes = min(count, sizeof(buf));
if (copy_from_user(&buf, p, bytes))
return -EFAULT;
count -= bytes;
p += bytes;
mix_pool_bytes(r, buf, bytes, NULL);
cond_resched();
}
return 0;
}
static ssize_t random_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
size_t ret;
ret = write_pool(&devrand_pool, buffer, count);
if (ret)
return ret; /* some error */
ret = write_pool(&prng_pool, buffer, count);
if (ret)
return ret; /* some error */
return (ssize_t)count;
}
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
int size, ent_count;
int __user *p = (int __user *)arg;
int retval;
switch (cmd) {
case RNDGETENTCNT:
/* inherently racy, no point locking */
if (put_user(input_pool.entropy_count, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
credit_entropy_bits(&input_pool, ent_count);
return 0;
case RNDADDENTROPY:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p++))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
if (get_user(size, p++))
return -EFAULT;
retval = write_pool(&input_pool, (const char __user *)p,
size);
if (retval < 0)
return retval;
credit_entropy_bits(&input_pool, ent_count);
return 0;
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/* Clear the entropy estimates. */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
rand_initialize();
return 0;
default:
return -EINVAL;
}
}
static int random_fasync(int fd, struct file *filp, int on)
{
return fasync_helper(fd, filp, on, &fasync);
}
const struct file_operations random_fops = {
.read = random_read,
.write = random_write,
.poll = random_poll,
.unlocked_ioctl = random_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
const struct file_operations urandom_fops = {
.read = urandom_read,
.write = random_write,
.unlocked_ioctl = random_ioctl,
.fasync = random_fasync,
.llseek = noop_llseek,
};
/***************************************************************
* Random UUID interface
*
* Used here for a Boot ID, but can be useful for other kernel
* drivers.
***************************************************************/
/*
* Generate randomly-distributed UUID
*/
void generate_random_uuid(unsigned char uuid_out[16])
{
get_random_bytes(uuid_out, 16);
/* Set UUID version to 4 --- truly random generation */
uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
/* Set the UUID variant to DCE */
uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
}
EXPORT_SYMBOL(generate_random_uuid);
/********************************************************************
*
* Sysctl interface
*
********************************************************************/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static int min_read_thresh = RESEED_BATCH;
static int min_write_thresh; /* shouldn't this have a value? */
static int max_read_thresh = INPUT_POOL_WORDS * 32;
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];
/*
* These functions is used to return both the bootid UUID, and random
* UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
*
* If the user accesses this via the proc interface, it will be returned
* as an ASCII string in the standard UUID format. If accesses via the
* sysctl system call, it is returned as 16 bytes of binary data.
*/
static int proc_do_uuid(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table fake_table;
unsigned char buf[64], tmp_uuid[16], *uuid;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
generate_random_uuid(uuid);
} else {
static DEFINE_SPINLOCK(bootid_spinlock);
spin_lock(&bootid_spinlock);
if (!uuid[8])
generate_random_uuid(uuid);
spin_unlock(&bootid_spinlock);
}
sprintf(buf, "%pU", uuid);
fake_table.data = buf;
fake_table.maxlen = sizeof(buf);
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
}
static int total_entropy_count;
static int sum_entropy_count(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos){
total_entropy_count = input_pool.entropy_count;
return proc_dointvec(table, write, buffer, lenp, ppos);
}
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
{
.procname = "poolsize",
.data = &sysctl_poolsize,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
{
.procname = "entropy_avail",
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = sum_entropy_count,
.data = &total_entropy_count,
},
{
.procname = "read_wakeup_threshold",
.data = &random_read_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_read_thresh,
.extra2 = &max_read_thresh,
},
{
.procname = "write_wakeup_threshold",
.data = &random_write_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &min_write_thresh,
.extra2 = &max_write_thresh,
},
{
.procname = "boot_id",
.data = &sysctl_bootid,
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{
.procname = "uuid",
.maxlen = 16,
.mode = 0444,
.proc_handler = proc_do_uuid,
},
{ }
};
#endif /* CONFIG_SYSCTL */
static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
static int __init random_int_secret_init(void)
{
get_random_bytes(random_int_secret, sizeof(random_int_secret));
return 0;
}
late_initcall(random_int_secret_init);
/*
* Get a word from a random distribution, for internal kernel use
* only. Similar to urandom but with the goal of minimal consumption
* of entropy. As a result, the random distribution is not
* cryptographically secure but for several uses the cost of depleting
* entropy is too high.
* Presumably no longer needed, now that /dev/urandom
* no longer consumes entropy so rapaciously.
*/
static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
unsigned int get_random_int(void)
{
__u32 *hash;
unsigned int ret;
if (arch_get_random_int(&ret))
return ret;
hash = get_cpu_var(get_random_int_hash);
hash[0] += current->pid + jiffies + get_cycles();
md5_transform(hash, random_int_secret);
ret = hash[0];
put_cpu_var(get_random_int_hash);
return ret;
}
EXPORT_SYMBOL(get_random_int);
/*
* randomize_range() returns a start address such that
*
* [...... <range> .....]
* start end
*
* a <range> with size "len" starting at the return value is inside in the
* area defined by [start, end], but is otherwise randomized.
*/
unsigned long
randomize_range(unsigned long start, unsigned long end, unsigned long len)
{
unsigned long range = end - len - start;
if (end <= start + len)
return 0;
return PAGE_ALIGN(get_random_int() % range + start);
}
|