diff options
| author | John Denker <jsd@av8n.com> | 2013-10-06 18:57:27 -0700 | 
|---|---|---|
| committer | John Denker <jsd@av8n.com> | 2013-10-18 05:19:01 -0700 | 
| commit | c121dfb5fe8e49c2f4d867730c001a337f6d2813 (patch) | |
| tree | ce1a5e26cef9e2bcc63cc53f88ada29cca0e125d /drivers/char | |
| parent | 634d365a03cb0581a062cd3cf4db9ae69f1cde26 (diff) | |
original, as distributed
Diffstat (limited to 'drivers/char')
| -rw-r--r-- | drivers/char/random.c | 1515 | 
1 files changed, 1515 insertions, 0 deletions
| diff --git a/drivers/char/random.c b/drivers/char/random.c new file mode 100644 index 0000000..0d91fe5 --- /dev/null +++ b/drivers/char/random.c @@ -0,0 +1,1515 @@ +/* + * random.c -- A strong random number generator + * + * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 + * + * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All + * rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + *    notice, and the entire permission notice in its entirety, + *    including the disclaimer of warranties. + * 2. Redistributions in binary form must reproduce the above copyright + *    notice, this list of conditions and the following disclaimer in the + *    documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote + *    products derived from this software without specific prior + *    written permission. + * + * ALTERNATIVELY, this product may be distributed under the terms of + * the GNU General Public License, in which case the provisions of the GPL are + * required INSTEAD OF the above restrictions.  (This clause is + * necessary due to a potential bad interaction between the GPL and + * the restrictions contained in a BSD-style copyright.) + * + * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF + * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT + * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE + * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + */ + +/* + * (now, with legal B.S. out of the way.....) + * + * This routine gathers environmental noise from device drivers, etc., + * and returns good random numbers, suitable for cryptographic use. + * Besides the obvious cryptographic uses, these numbers are also good + * for seeding TCP sequence numbers, and other places where it is + * desirable to have numbers which are not only random, but hard to + * predict by an attacker. + * + * Theory of operation + * =================== + * + * Computers are very predictable devices.  Hence it is extremely hard + * to produce truly random numbers on a computer --- as opposed to + * pseudo-random numbers, which can easily generated by using a + * algorithm.  Unfortunately, it is very easy for attackers to guess + * the sequence of pseudo-random number generators, and for some + * applications this is not acceptable.  So instead, we must try to + * gather "environmental noise" from the computer's environment, which + * must be hard for outside attackers to observe, and use that to + * generate random numbers.  In a Unix environment, this is best done + * from inside the kernel. + * + * Sources of randomness from the environment include inter-keyboard + * timings, inter-interrupt timings from some interrupts, and other + * events which are both (a) non-deterministic and (b) hard for an + * outside observer to measure.  Randomness from these sources are + * added to an "entropy pool", which is mixed using a CRC-like function. + * This is not cryptographically strong, but it is adequate assuming + * the randomness is not chosen maliciously, and it is fast enough that + * the overhead of doing it on every interrupt is very reasonable. + * As random bytes are mixed into the entropy pool, the routines keep + * an *estimate* of how many bits of randomness have been stored into + * the random number generator's internal state. + * + * When random bytes are desired, they are obtained by taking the SHA + * hash of the contents of the "entropy pool".  The SHA hash avoids + * exposing the internal state of the entropy pool.  It is believed to + * be computationally infeasible to derive any useful information + * about the input of SHA from its output.  Even if it is possible to + * analyze SHA in some clever way, as long as the amount of data + * returned from the generator is less than the inherent entropy in + * the pool, the output data is totally unpredictable.  For this + * reason, the routine decreases its internal estimate of how many + * bits of "true randomness" are contained in the entropy pool as it + * outputs random numbers. + * + * If this estimate goes to zero, the routine can still generate + * random numbers; however, an attacker may (at least in theory) be + * able to infer the future output of the generator from prior + * outputs.  This requires successful cryptanalysis of SHA, which is + * not believed to be feasible, but there is a remote possibility. + * Nonetheless, these numbers should be useful for the vast majority + * of purposes. + * + * Exported interfaces ---- output + * =============================== + * + * There are three exported interfaces; the first is one designed to + * be used from within the kernel: + * + * 	void get_random_bytes(void *buf, int nbytes); + * + * This interface will return the requested number of random bytes, + * and place it in the requested buffer. + * + * The two other interfaces are two character devices /dev/random and + * /dev/urandom.  /dev/random is suitable for use when very high + * quality randomness is desired (for example, for key generation or + * one-time pads), as it will only return a maximum of the number of + * bits of randomness (as estimated by the random number generator) + * contained in the entropy pool. + * + * The /dev/urandom device does not have this limit, and will return + * as many bytes as are requested.  As more and more random bytes are + * requested without giving time for the entropy pool to recharge, + * this will result in random numbers that are merely cryptographically + * strong.  For many applications, however, this is acceptable. + * + * Exported interfaces ---- input + * ============================== + * + * The current exported interfaces for gathering environmental noise + * from the devices are: + * + *	void add_device_randomness(const void *buf, unsigned int size); + * 	void add_input_randomness(unsigned int type, unsigned int code, + *                                unsigned int value); + *	void add_interrupt_randomness(int irq, int irq_flags); + * 	void add_disk_randomness(struct gendisk *disk); + * + * add_device_randomness() is for adding data to the random pool that + * is likely to differ between two devices (or possibly even per boot). + * This would be things like MAC addresses or serial numbers, or the + * read-out of the RTC. This does *not* add any actual entropy to the + * pool, but it initializes the pool to different values for devices + * that might otherwise be identical and have very little entropy + * available to them (particularly common in the embedded world). + * + * add_input_randomness() uses the input layer interrupt timing, as well as + * the event type information from the hardware. + * + * add_interrupt_randomness() uses the interrupt timing as random + * inputs to the entropy pool. Using the cycle counters and the irq source + * as inputs, it feeds the randomness roughly once a second. + * + * add_disk_randomness() uses what amounts to the seek time of block + * layer request events, on a per-disk_devt basis, as input to the + * entropy pool. Note that high-speed solid state drives with very low + * seek times do not make for good sources of entropy, as their seek + * times are usually fairly consistent. + * + * All of these routines try to estimate how many bits of randomness a + * particular randomness source.  They do this by keeping track of the + * first and second order deltas of the event timings. + * + * Ensuring unpredictability at system startup + * ============================================ + * + * When any operating system starts up, it will go through a sequence + * of actions that are fairly predictable by an adversary, especially + * if the start-up does not involve interaction with a human operator. + * This reduces the actual number of bits of unpredictability in the + * entropy pool below the value in entropy_count.  In order to + * counteract this effect, it helps to carry information in the + * entropy pool across shut-downs and start-ups.  To do this, put the + * following lines an appropriate script which is run during the boot + * sequence: + * + *	echo "Initializing random number generator..." + *	random_seed=/var/run/random-seed + *	# Carry a random seed from start-up to start-up + *	# Load and then save the whole entropy pool + *	if [ -f $random_seed ]; then + *		cat $random_seed >/dev/urandom + *	else + *		touch $random_seed + *	fi + *	chmod 600 $random_seed + *	dd if=/dev/urandom of=$random_seed count=1 bs=512 + * + * and the following lines in an appropriate script which is run as + * the system is shutdown: + * + *	# Carry a random seed from shut-down to start-up + *	# Save the whole entropy pool + *	echo "Saving random seed..." + *	random_seed=/var/run/random-seed + *	touch $random_seed + *	chmod 600 $random_seed + *	dd if=/dev/urandom of=$random_seed count=1 bs=512 + * + * For example, on most modern systems using the System V init + * scripts, such code fragments would be found in + * /etc/rc.d/init.d/random.  On older Linux systems, the correct script + * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. + * + * Effectively, these commands cause the contents of the entropy pool + * to be saved at shut-down time and reloaded into the entropy pool at + * start-up.  (The 'dd' in the addition to the bootup script is to + * make sure that /etc/random-seed is different for every start-up, + * even if the system crashes without executing rc.0.)  Even with + * complete knowledge of the start-up activities, predicting the state + * of the entropy pool requires knowledge of the previous history of + * the system. + * + * Configuring the /dev/random driver under Linux + * ============================================== + * + * The /dev/random driver under Linux uses minor numbers 8 and 9 of + * the /dev/mem major number (#1).  So if your system does not have + * /dev/random and /dev/urandom created already, they can be created + * by using the commands: + * + * 	mknod /dev/random c 1 8 + * 	mknod /dev/urandom c 1 9 + * + * Acknowledgements: + * ================= + * + * Ideas for constructing this random number generator were derived + * from Pretty Good Privacy's random number generator, and from private + * discussions with Phil Karn.  Colin Plumb provided a faster random + * number generator, which speed up the mixing function of the entropy + * pool, taken from PGPfone.  Dale Worley has also contributed many + * useful ideas and suggestions to improve this driver. + * + * Any flaws in the design are solely my responsibility, and should + * not be attributed to the Phil, Colin, or any of authors of PGP. + * + * Further background information on this topic may be obtained from + * RFC 1750, "Randomness Recommendations for Security", by Donald + * Eastlake, Steve Crocker, and Jeff Schiller. + */ + +#include <linux/utsname.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/major.h> +#include <linux/string.h> +#include <linux/fcntl.h> +#include <linux/slab.h> +#include <linux/random.h> +#include <linux/poll.h> +#include <linux/init.h> +#include <linux/fs.h> +#include <linux/genhd.h> +#include <linux/interrupt.h> +#include <linux/mm.h> +#include <linux/spinlock.h> +#include <linux/percpu.h> +#include <linux/cryptohash.h> +#include <linux/fips.h> +#include <linux/ptrace.h> +#include <linux/kmemcheck.h> + +#ifdef CONFIG_GENERIC_HARDIRQS +# include <linux/irq.h> +#endif + +#include <asm/processor.h> +#include <asm/uaccess.h> +#include <asm/irq.h> +#include <asm/irq_regs.h> +#include <asm/io.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/random.h> + +/* + * Configuration information + */ +#define INPUT_POOL_WORDS 128 +#define OUTPUT_POOL_WORDS 32 +#define SEC_XFER_SIZE 512 +#define EXTRACT_SIZE 10 + +#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) + +/* + * The minimum number of bits of entropy before we wake up a read on + * /dev/random.  Should be enough to do a significant reseed. + */ +static int random_read_wakeup_thresh = 64; + +/* + * If the entropy count falls under this number of bits, then we + * should wake up processes which are selecting or polling on write + * access to /dev/random. + */ +static int random_write_wakeup_thresh = 128; + +/* + * When the input pool goes over trickle_thresh, start dropping most + * samples to avoid wasting CPU time and reduce lock contention. + */ + +static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; + +static DEFINE_PER_CPU(int, trickle_count); + +/* + * A pool of size .poolwords is stirred with a primitive polynomial + * of degree .poolwords over GF(2).  The taps for various sizes are + * defined below.  They are chosen to be evenly spaced (minimum RMS + * distance from evenly spaced; the numbers in the comments are a + * scaled squared error sum) except for the last tap, which is 1 to + * get the twisting happening as fast as possible. + */ +static struct poolinfo { +	int poolwords; +	int tap1, tap2, tap3, tap4, tap5; +} poolinfo_table[] = { +	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ +	{ 128,	103,	76,	51,	25,	1 }, +	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ +	{ 32,	26,	20,	14,	7,	1 }, +#if 0 +	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */ +	{ 2048,	1638,	1231,	819,	411,	1 }, + +	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ +	{ 1024,	817,	615,	412,	204,	1 }, + +	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ +	{ 1024,	819,	616,	410,	207,	2 }, + +	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ +	{ 512,	411,	308,	208,	104,	1 }, + +	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ +	{ 512,	409,	307,	206,	102,	2 }, +	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ +	{ 512,	409,	309,	205,	103,	2 }, + +	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ +	{ 256,	205,	155,	101,	52,	1 }, + +	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ +	{ 128,	103,	78,	51,	27,	2 }, + +	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ +	{ 64,	52,	39,	26,	14,	1 }, +#endif +}; + +#define POOLBITS	poolwords*32 +#define POOLBYTES	poolwords*4 + +/* + * For the purposes of better mixing, we use the CRC-32 polynomial as + * well to make a twisted Generalized Feedback Shift Reigster + * + * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM + * Transactions on Modeling and Computer Simulation 2(3):179-194. + * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators + * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266) + * + * Thanks to Colin Plumb for suggesting this. + * + * We have not analyzed the resultant polynomial to prove it primitive; + * in fact it almost certainly isn't.  Nonetheless, the irreducible factors + * of a random large-degree polynomial over GF(2) are more than large enough + * that periodicity is not a concern. + * + * The input hash is much less sensitive than the output hash.  All + * that we want of it is that it be a good non-cryptographic hash; + * i.e. it not produce collisions when fed "random" data of the sort + * we expect to see.  As long as the pool state differs for different + * inputs, we have preserved the input entropy and done a good job. + * The fact that an intelligent attacker can construct inputs that + * will produce controlled alterations to the pool's state is not + * important because we don't consider such inputs to contribute any + * randomness.  The only property we need with respect to them is that + * the attacker can't increase his/her knowledge of the pool's state. + * Since all additions are reversible (knowing the final state and the + * input, you can reconstruct the initial state), if an attacker has + * any uncertainty about the initial state, he/she can only shuffle + * that uncertainty about, but never cause any collisions (which would + * decrease the uncertainty). + * + * The chosen system lets the state of the pool be (essentially) the input + * modulo the generator polymnomial.  Now, for random primitive polynomials, + * this is a universal class of hash functions, meaning that the chance + * of a collision is limited by the attacker's knowledge of the generator + * polynomail, so if it is chosen at random, an attacker can never force + * a collision.  Here, we use a fixed polynomial, but we *can* assume that + * ###--> it is unknown to the processes generating the input entropy. <-### + * Because of this important property, this is a good, collision-resistant + * hash; hash collisions will occur no more often than chance. + */ + +/* + * Static global variables + */ +static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); +static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); +static struct fasync_struct *fasync; + +static bool debug; +module_param(debug, bool, 0644); +#define DEBUG_ENT(fmt, arg...) do { \ +	if (debug) \ +		printk(KERN_DEBUG "random %04d %04d %04d: " \ +		fmt,\ +		input_pool.entropy_count,\ +		blocking_pool.entropy_count,\ +		nonblocking_pool.entropy_count,\ +		## arg); } while (0) + +/********************************************************************** + * + * OS independent entropy store.   Here are the functions which handle + * storing entropy in an entropy pool. + * + **********************************************************************/ + +struct entropy_store; +struct entropy_store { +	/* read-only data: */ +	struct poolinfo *poolinfo; +	__u32 *pool; +	const char *name; +	struct entropy_store *pull; +	int limit; + +	/* read-write data: */ +	spinlock_t lock; +	unsigned add_ptr; +	unsigned input_rotate; +	int entropy_count; +	int entropy_total; +	unsigned int initialized:1; +	bool last_data_init; +	__u8 last_data[EXTRACT_SIZE]; +}; + +static __u32 input_pool_data[INPUT_POOL_WORDS]; +static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; +static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; + +static struct entropy_store input_pool = { +	.poolinfo = &poolinfo_table[0], +	.name = "input", +	.limit = 1, +	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), +	.pool = input_pool_data +}; + +static struct entropy_store blocking_pool = { +	.poolinfo = &poolinfo_table[1], +	.name = "blocking", +	.limit = 1, +	.pull = &input_pool, +	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), +	.pool = blocking_pool_data +}; + +static struct entropy_store nonblocking_pool = { +	.poolinfo = &poolinfo_table[1], +	.name = "nonblocking", +	.pull = &input_pool, +	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), +	.pool = nonblocking_pool_data +}; + +static __u32 const twist_table[8] = { +	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, +	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; + +/* + * This function adds bytes into the entropy "pool".  It does not + * update the entropy estimate.  The caller should call + * credit_entropy_bits if this is appropriate. + * + * The pool is stirred with a primitive polynomial of the appropriate + * degree, and then twisted.  We twist by three bits at a time because + * it's cheap to do so and helps slightly in the expected case where + * the entropy is concentrated in the low-order bits. + */ +static void _mix_pool_bytes(struct entropy_store *r, const void *in, +			    int nbytes, __u8 out[64]) +{ +	unsigned long i, j, tap1, tap2, tap3, tap4, tap5; +	int input_rotate; +	int wordmask = r->poolinfo->poolwords - 1; +	const char *bytes = in; +	__u32 w; + +	tap1 = r->poolinfo->tap1; +	tap2 = r->poolinfo->tap2; +	tap3 = r->poolinfo->tap3; +	tap4 = r->poolinfo->tap4; +	tap5 = r->poolinfo->tap5; + +	smp_rmb(); +	input_rotate = ACCESS_ONCE(r->input_rotate); +	i = ACCESS_ONCE(r->add_ptr); + +	/* mix one byte at a time to simplify size handling and churn faster */ +	while (nbytes--) { +		w = rol32(*bytes++, input_rotate & 31); +		i = (i - 1) & wordmask; + +		/* XOR in the various taps */ +		w ^= r->pool[i]; +		w ^= r->pool[(i + tap1) & wordmask]; +		w ^= r->pool[(i + tap2) & wordmask]; +		w ^= r->pool[(i + tap3) & wordmask]; +		w ^= r->pool[(i + tap4) & wordmask]; +		w ^= r->pool[(i + tap5) & wordmask]; + +		/* Mix the result back in with a twist */ +		r->pool[i] = (w >> 3) ^ twist_table[w & 7]; + +		/* +		 * Normally, we add 7 bits of rotation to the pool. +		 * At the beginning of the pool, add an extra 7 bits +		 * rotation, so that successive passes spread the +		 * input bits across the pool evenly. +		 */ +		input_rotate += i ? 7 : 14; +	} + +	ACCESS_ONCE(r->input_rotate) = input_rotate; +	ACCESS_ONCE(r->add_ptr) = i; +	smp_wmb(); + +	if (out) +		for (j = 0; j < 16; j++) +			((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; +} + +static void __mix_pool_bytes(struct entropy_store *r, const void *in, +			     int nbytes, __u8 out[64]) +{ +	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); +	_mix_pool_bytes(r, in, nbytes, out); +} + +static void mix_pool_bytes(struct entropy_store *r, const void *in, +			   int nbytes, __u8 out[64]) +{ +	unsigned long flags; + +	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); +	spin_lock_irqsave(&r->lock, flags); +	_mix_pool_bytes(r, in, nbytes, out); +	spin_unlock_irqrestore(&r->lock, flags); +} + +struct fast_pool { +	__u32		pool[4]; +	unsigned long	last; +	unsigned short	count; +	unsigned char	rotate; +	unsigned char	last_timer_intr; +}; + +/* + * This is a fast mixing routine used by the interrupt randomness + * collector.  It's hardcoded for an 128 bit pool and assumes that any + * locks that might be needed are taken by the caller. + */ +static void fast_mix(struct fast_pool *f, const void *in, int nbytes) +{ +	const char	*bytes = in; +	__u32		w; +	unsigned	i = f->count; +	unsigned	input_rotate = f->rotate; + +	while (nbytes--) { +		w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^ +			f->pool[(i + 1) & 3]; +		f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7]; +		input_rotate += (i++ & 3) ? 7 : 14; +	} +	f->count = i; +	f->rotate = input_rotate; +} + +/* + * Credit (or debit) the entropy store with n bits of entropy + */ +static void credit_entropy_bits(struct entropy_store *r, int nbits) +{ +	int entropy_count, orig; + +	if (!nbits) +		return; + +	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); +retry: +	entropy_count = orig = ACCESS_ONCE(r->entropy_count); +	entropy_count += nbits; + +	if (entropy_count < 0) { +		DEBUG_ENT("negative entropy/overflow\n"); +		entropy_count = 0; +	} else if (entropy_count > r->poolinfo->POOLBITS) +		entropy_count = r->poolinfo->POOLBITS; +	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) +		goto retry; + +	if (!r->initialized && nbits > 0) { +		r->entropy_total += nbits; +		if (r->entropy_total > 128) +			r->initialized = 1; +	} + +	trace_credit_entropy_bits(r->name, nbits, entropy_count, +				  r->entropy_total, _RET_IP_); + +	/* should we wake readers? */ +	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { +		wake_up_interruptible(&random_read_wait); +		kill_fasync(&fasync, SIGIO, POLL_IN); +	} +} + +/********************************************************************* + * + * Entropy input management + * + *********************************************************************/ + +/* There is one of these per entropy source */ +struct timer_rand_state { +	cycles_t last_time; +	long last_delta, last_delta2; +	unsigned dont_count_entropy:1; +}; + +/* + * Add device- or boot-specific data to the input and nonblocking + * pools to help initialize them to unique values. + * + * None of this adds any entropy, it is meant to avoid the + * problem of the nonblocking pool having similar initial state + * across largely identical devices. + */ +void add_device_randomness(const void *buf, unsigned int size) +{ +	unsigned long time = get_cycles() ^ jiffies; + +	mix_pool_bytes(&input_pool, buf, size, NULL); +	mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); +	mix_pool_bytes(&nonblocking_pool, buf, size, NULL); +	mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); +} +EXPORT_SYMBOL(add_device_randomness); + +static struct timer_rand_state input_timer_state; + +/* + * This function adds entropy to the entropy "pool" by using timing + * delays.  It uses the timer_rand_state structure to make an estimate + * of how many bits of entropy this call has added to the pool. + * + * The number "num" is also added to the pool - it should somehow describe + * the type of event which just happened.  This is currently 0-255 for + * keyboard scan codes, and 256 upwards for interrupts. + * + */ +static void add_timer_randomness(struct timer_rand_state *state, unsigned num) +{ +	struct { +		long jiffies; +		unsigned cycles; +		unsigned num; +	} sample; +	long delta, delta2, delta3; + +	preempt_disable(); +	/* if over the trickle threshold, use only 1 in 4096 samples */ +	if (input_pool.entropy_count > trickle_thresh && +	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) +		goto out; + +	sample.jiffies = jiffies; +	sample.cycles = get_cycles(); +	sample.num = num; +	mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL); + +	/* +	 * Calculate number of bits of randomness we probably added. +	 * We take into account the first, second and third-order deltas +	 * in order to make our estimate. +	 */ + +	if (!state->dont_count_entropy) { +		delta = sample.jiffies - state->last_time; +		state->last_time = sample.jiffies; + +		delta2 = delta - state->last_delta; +		state->last_delta = delta; + +		delta3 = delta2 - state->last_delta2; +		state->last_delta2 = delta2; + +		if (delta < 0) +			delta = -delta; +		if (delta2 < 0) +			delta2 = -delta2; +		if (delta3 < 0) +			delta3 = -delta3; +		if (delta > delta2) +			delta = delta2; +		if (delta > delta3) +			delta = delta3; + +		/* +		 * delta is now minimum absolute delta. +		 * Round down by 1 bit on general principles, +		 * and limit entropy entimate to 12 bits. +		 */ +		credit_entropy_bits(&input_pool, +				    min_t(int, fls(delta>>1), 11)); +	} +out: +	preempt_enable(); +} + +void add_input_randomness(unsigned int type, unsigned int code, +				 unsigned int value) +{ +	static unsigned char last_value; + +	/* ignore autorepeat and the like */ +	if (value == last_value) +		return; + +	DEBUG_ENT("input event\n"); +	last_value = value; +	add_timer_randomness(&input_timer_state, +			     (type << 4) ^ code ^ (code >> 4) ^ value); +} +EXPORT_SYMBOL_GPL(add_input_randomness); + +static DEFINE_PER_CPU(struct fast_pool, irq_randomness); + +void add_interrupt_randomness(int irq, int irq_flags) +{ +	struct entropy_store	*r; +	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness); +	struct pt_regs		*regs = get_irq_regs(); +	unsigned long		now = jiffies; +	__u32			input[4], cycles = get_cycles(); + +	input[0] = cycles ^ jiffies; +	input[1] = irq; +	if (regs) { +		__u64 ip = instruction_pointer(regs); +		input[2] = ip; +		input[3] = ip >> 32; +	} + +	fast_mix(fast_pool, input, sizeof(input)); + +	if ((fast_pool->count & 1023) && +	    !time_after(now, fast_pool->last + HZ)) +		return; + +	fast_pool->last = now; + +	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; +	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); +	/* +	 * If we don't have a valid cycle counter, and we see +	 * back-to-back timer interrupts, then skip giving credit for +	 * any entropy. +	 */ +	if (cycles == 0) { +		if (irq_flags & __IRQF_TIMER) { +			if (fast_pool->last_timer_intr) +				return; +			fast_pool->last_timer_intr = 1; +		} else +			fast_pool->last_timer_intr = 0; +	} +	credit_entropy_bits(r, 1); +} + +#ifdef CONFIG_BLOCK +void add_disk_randomness(struct gendisk *disk) +{ +	if (!disk || !disk->random) +		return; +	/* first major is 1, so we get >= 0x200 here */ +	DEBUG_ENT("disk event %d:%d\n", +		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); + +	add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); +} +#endif + +/********************************************************************* + * + * Entropy extraction routines + * + *********************************************************************/ + +static ssize_t extract_entropy(struct entropy_store *r, void *buf, +			       size_t nbytes, int min, int rsvd); + +/* + * This utility inline function is responsible for transferring entropy + * from the primary pool to the secondary extraction pool. We make + * sure we pull enough for a 'catastrophic reseed'. + */ +static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) +{ +	__u32	tmp[OUTPUT_POOL_WORDS]; + +	if (r->pull && r->entropy_count < nbytes * 8 && +	    r->entropy_count < r->poolinfo->POOLBITS) { +		/* If we're limited, always leave two wakeup worth's BITS */ +		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; +		int bytes = nbytes; + +		/* pull at least as many as BYTES as wakeup BITS */ +		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); +		/* but never more than the buffer size */ +		bytes = min_t(int, bytes, sizeof(tmp)); + +		DEBUG_ENT("going to reseed %s with %d bits " +			  "(%zu of %d requested)\n", +			  r->name, bytes * 8, nbytes * 8, r->entropy_count); + +		bytes = extract_entropy(r->pull, tmp, bytes, +					random_read_wakeup_thresh / 8, rsvd); +		mix_pool_bytes(r, tmp, bytes, NULL); +		credit_entropy_bits(r, bytes*8); +	} +} + +/* + * These functions extracts randomness from the "entropy pool", and + * returns it in a buffer. + * + * The min parameter specifies the minimum amount we can pull before + * failing to avoid races that defeat catastrophic reseeding while the + * reserved parameter indicates how much entropy we must leave in the + * pool after each pull to avoid starving other readers. + * + * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. + */ + +static size_t account(struct entropy_store *r, size_t nbytes, int min, +		      int reserved) +{ +	unsigned long flags; +	int wakeup_write = 0; + +	/* Hold lock while accounting */ +	spin_lock_irqsave(&r->lock, flags); + +	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); +	DEBUG_ENT("trying to extract %zu bits from %s\n", +		  nbytes * 8, r->name); + +	/* Can we pull enough? */ +	if (r->entropy_count / 8 < min + reserved) { +		nbytes = 0; +	} else { +		int entropy_count, orig; +retry: +		entropy_count = orig = ACCESS_ONCE(r->entropy_count); +		/* If limited, never pull more than available */ +		if (r->limit && nbytes + reserved >= entropy_count / 8) +			nbytes = entropy_count/8 - reserved; + +		if (entropy_count / 8 >= nbytes + reserved) { +			entropy_count -= nbytes*8; +			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) +				goto retry; +		} else { +			entropy_count = reserved; +			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) +				goto retry; +		} + +		if (entropy_count < random_write_wakeup_thresh) +			wakeup_write = 1; +	} + +	DEBUG_ENT("debiting %zu entropy credits from %s%s\n", +		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); + +	spin_unlock_irqrestore(&r->lock, flags); + +	if (wakeup_write) { +		wake_up_interruptible(&random_write_wait); +		kill_fasync(&fasync, SIGIO, POLL_OUT); +	} + +	return nbytes; +} + +static void extract_buf(struct entropy_store *r, __u8 *out) +{ +	int i; +	union { +		__u32 w[5]; +		unsigned long l[LONGS(EXTRACT_SIZE)]; +	} hash; +	__u32 workspace[SHA_WORKSPACE_WORDS]; +	__u8 extract[64]; +	unsigned long flags; + +	/* Generate a hash across the pool, 16 words (512 bits) at a time */ +	sha_init(hash.w); +	spin_lock_irqsave(&r->lock, flags); +	for (i = 0; i < r->poolinfo->poolwords; i += 16) +		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); + +	/* +	 * We mix the hash back into the pool to prevent backtracking +	 * attacks (where the attacker knows the state of the pool +	 * plus the current outputs, and attempts to find previous +	 * ouputs), unless the hash function can be inverted. By +	 * mixing at least a SHA1 worth of hash data back, we make +	 * brute-forcing the feedback as hard as brute-forcing the +	 * hash. +	 */ +	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); +	spin_unlock_irqrestore(&r->lock, flags); + +	/* +	 * To avoid duplicates, we atomically extract a portion of the +	 * pool while mixing, and hash one final time. +	 */ +	sha_transform(hash.w, extract, workspace); +	memset(extract, 0, sizeof(extract)); +	memset(workspace, 0, sizeof(workspace)); + +	/* +	 * In case the hash function has some recognizable output +	 * pattern, we fold it in half. Thus, we always feed back +	 * twice as much data as we output. +	 */ +	hash.w[0] ^= hash.w[3]; +	hash.w[1] ^= hash.w[4]; +	hash.w[2] ^= rol32(hash.w[2], 16); + +	/* +	 * If we have a architectural hardware random number +	 * generator, mix that in, too. +	 */ +	for (i = 0; i < LONGS(EXTRACT_SIZE); i++) { +		unsigned long v; +		if (!arch_get_random_long(&v)) +			break; +		hash.l[i] ^= v; +	} + +	memcpy(out, &hash, EXTRACT_SIZE); +	memset(&hash, 0, sizeof(hash)); +} + +static ssize_t extract_entropy(struct entropy_store *r, void *buf, +				 size_t nbytes, int min, int reserved) +{ +	ssize_t ret = 0, i; +	__u8 tmp[EXTRACT_SIZE]; +	unsigned long flags; + +	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ +	if (fips_enabled) { +		spin_lock_irqsave(&r->lock, flags); +		if (!r->last_data_init) { +			r->last_data_init = true; +			spin_unlock_irqrestore(&r->lock, flags); +			trace_extract_entropy(r->name, EXTRACT_SIZE, +					      r->entropy_count, _RET_IP_); +			xfer_secondary_pool(r, EXTRACT_SIZE); +			extract_buf(r, tmp); +			spin_lock_irqsave(&r->lock, flags); +			memcpy(r->last_data, tmp, EXTRACT_SIZE); +		} +		spin_unlock_irqrestore(&r->lock, flags); +	} + +	trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_); +	xfer_secondary_pool(r, nbytes); +	nbytes = account(r, nbytes, min, reserved); + +	while (nbytes) { +		extract_buf(r, tmp); + +		if (fips_enabled) { +			spin_lock_irqsave(&r->lock, flags); +			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) +				panic("Hardware RNG duplicated output!\n"); +			memcpy(r->last_data, tmp, EXTRACT_SIZE); +			spin_unlock_irqrestore(&r->lock, flags); +		} +		i = min_t(int, nbytes, EXTRACT_SIZE); +		memcpy(buf, tmp, i); +		nbytes -= i; +		buf += i; +		ret += i; +	} + +	/* Wipe data just returned from memory */ +	memset(tmp, 0, sizeof(tmp)); + +	return ret; +} + +static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, +				    size_t nbytes) +{ +	ssize_t ret = 0, i; +	__u8 tmp[EXTRACT_SIZE]; + +	trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_); +	xfer_secondary_pool(r, nbytes); +	nbytes = account(r, nbytes, 0, 0); + +	while (nbytes) { +		if (need_resched()) { +			if (signal_pending(current)) { +				if (ret == 0) +					ret = -ERESTARTSYS; +				break; +			} +			schedule(); +		} + +		extract_buf(r, tmp); +		i = min_t(int, nbytes, EXTRACT_SIZE); +		if (copy_to_user(buf, tmp, i)) { +			ret = -EFAULT; +			break; +		} + +		nbytes -= i; +		buf += i; +		ret += i; +	} + +	/* Wipe data just returned from memory */ +	memset(tmp, 0, sizeof(tmp)); + +	return ret; +} + +/* + * This function is the exported kernel interface.  It returns some + * number of good random numbers, suitable for key generation, seeding + * TCP sequence numbers, etc.  It does not use the hw random number + * generator, if available; use get_random_bytes_arch() for that. + */ +void get_random_bytes(void *buf, int nbytes) +{ +	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); +} +EXPORT_SYMBOL(get_random_bytes); + +/* + * This function will use the architecture-specific hardware random + * number generator if it is available.  The arch-specific hw RNG will + * almost certainly be faster than what we can do in software, but it + * is impossible to verify that it is implemented securely (as + * opposed, to, say, the AES encryption of a sequence number using a + * key known by the NSA).  So it's useful if we need the speed, but + * only if we're willing to trust the hardware manufacturer not to + * have put in a back door. + */ +void get_random_bytes_arch(void *buf, int nbytes) +{ +	char *p = buf; + +	trace_get_random_bytes(nbytes, _RET_IP_); +	while (nbytes) { +		unsigned long v; +		int chunk = min(nbytes, (int)sizeof(unsigned long)); + +		if (!arch_get_random_long(&v)) +			break; +		 +		memcpy(p, &v, chunk); +		p += chunk; +		nbytes -= chunk; +	} + +	if (nbytes) +		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); +} +EXPORT_SYMBOL(get_random_bytes_arch); + + +/* + * init_std_data - initialize pool with system data + * + * @r: pool to initialize + * + * This function clears the pool's entropy count and mixes some system + * data into the pool to prepare it for use. The pool is not cleared + * as that can only decrease the entropy in the pool. + */ +static void init_std_data(struct entropy_store *r) +{ +	int i; +	ktime_t now = ktime_get_real(); +	unsigned long rv; + +	r->entropy_count = 0; +	r->entropy_total = 0; +	r->last_data_init = false; +	mix_pool_bytes(r, &now, sizeof(now), NULL); +	for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) { +		if (!arch_get_random_long(&rv)) +			break; +		mix_pool_bytes(r, &rv, sizeof(rv), NULL); +	} +	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); +} + +/* + * Note that setup_arch() may call add_device_randomness() + * long before we get here. This allows seeding of the pools + * with some platform dependent data very early in the boot + * process. But it limits our options here. We must use + * statically allocated structures that already have all + * initializations complete at compile time. We should also + * take care not to overwrite the precious per platform data + * we were given. + */ +static int rand_initialize(void) +{ +	init_std_data(&input_pool); +	init_std_data(&blocking_pool); +	init_std_data(&nonblocking_pool); +	return 0; +} +module_init(rand_initialize); + +#ifdef CONFIG_BLOCK +void rand_initialize_disk(struct gendisk *disk) +{ +	struct timer_rand_state *state; + +	/* +	 * If kzalloc returns null, we just won't use that entropy +	 * source. +	 */ +	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); +	if (state) +		disk->random = state; +} +#endif + +static ssize_t +random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) +{ +	ssize_t n, retval = 0, count = 0; + +	if (nbytes == 0) +		return 0; + +	while (nbytes > 0) { +		n = nbytes; +		if (n > SEC_XFER_SIZE) +			n = SEC_XFER_SIZE; + +		DEBUG_ENT("reading %zu bits\n", n*8); + +		n = extract_entropy_user(&blocking_pool, buf, n); + +		if (n < 0) { +			retval = n; +			break; +		} + +		DEBUG_ENT("read got %zd bits (%zd still needed)\n", +			  n*8, (nbytes-n)*8); + +		if (n == 0) { +			if (file->f_flags & O_NONBLOCK) { +				retval = -EAGAIN; +				break; +			} + +			DEBUG_ENT("sleeping?\n"); + +			wait_event_interruptible(random_read_wait, +				input_pool.entropy_count >= +						 random_read_wakeup_thresh); + +			DEBUG_ENT("awake\n"); + +			if (signal_pending(current)) { +				retval = -ERESTARTSYS; +				break; +			} + +			continue; +		} + +		count += n; +		buf += n; +		nbytes -= n; +		break;		/* This break makes the device work */ +				/* like a named pipe */ +	} + +	return (count ? count : retval); +} + +static ssize_t +urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) +{ +	return extract_entropy_user(&nonblocking_pool, buf, nbytes); +} + +static unsigned int +random_poll(struct file *file, poll_table * wait) +{ +	unsigned int mask; + +	poll_wait(file, &random_read_wait, wait); +	poll_wait(file, &random_write_wait, wait); +	mask = 0; +	if (input_pool.entropy_count >= random_read_wakeup_thresh) +		mask |= POLLIN | POLLRDNORM; +	if (input_pool.entropy_count < random_write_wakeup_thresh) +		mask |= POLLOUT | POLLWRNORM; +	return mask; +} + +static int +write_pool(struct entropy_store *r, const char __user *buffer, size_t count) +{ +	size_t bytes; +	__u32 buf[16]; +	const char __user *p = buffer; + +	while (count > 0) { +		bytes = min(count, sizeof(buf)); +		if (copy_from_user(&buf, p, bytes)) +			return -EFAULT; + +		count -= bytes; +		p += bytes; + +		mix_pool_bytes(r, buf, bytes, NULL); +		cond_resched(); +	} + +	return 0; +} + +static ssize_t random_write(struct file *file, const char __user *buffer, +			    size_t count, loff_t *ppos) +{ +	size_t ret; + +	ret = write_pool(&blocking_pool, buffer, count); +	if (ret) +		return ret; +	ret = write_pool(&nonblocking_pool, buffer, count); +	if (ret) +		return ret; + +	return (ssize_t)count; +} + +static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) +{ +	int size, ent_count; +	int __user *p = (int __user *)arg; +	int retval; + +	switch (cmd) { +	case RNDGETENTCNT: +		/* inherently racy, no point locking */ +		if (put_user(input_pool.entropy_count, p)) +			return -EFAULT; +		return 0; +	case RNDADDTOENTCNT: +		if (!capable(CAP_SYS_ADMIN)) +			return -EPERM; +		if (get_user(ent_count, p)) +			return -EFAULT; +		credit_entropy_bits(&input_pool, ent_count); +		return 0; +	case RNDADDENTROPY: +		if (!capable(CAP_SYS_ADMIN)) +			return -EPERM; +		if (get_user(ent_count, p++)) +			return -EFAULT; +		if (ent_count < 0) +			return -EINVAL; +		if (get_user(size, p++)) +			return -EFAULT; +		retval = write_pool(&input_pool, (const char __user *)p, +				    size); +		if (retval < 0) +			return retval; +		credit_entropy_bits(&input_pool, ent_count); +		return 0; +	case RNDZAPENTCNT: +	case RNDCLEARPOOL: +		/* Clear the entropy pool counters. */ +		if (!capable(CAP_SYS_ADMIN)) +			return -EPERM; +		rand_initialize(); +		return 0; +	default: +		return -EINVAL; +	} +} + +static int random_fasync(int fd, struct file *filp, int on) +{ +	return fasync_helper(fd, filp, on, &fasync); +} + +const struct file_operations random_fops = { +	.read  = random_read, +	.write = random_write, +	.poll  = random_poll, +	.unlocked_ioctl = random_ioctl, +	.fasync = random_fasync, +	.llseek = noop_llseek, +}; + +const struct file_operations urandom_fops = { +	.read  = urandom_read, +	.write = random_write, +	.unlocked_ioctl = random_ioctl, +	.fasync = random_fasync, +	.llseek = noop_llseek, +}; + +/*************************************************************** + * Random UUID interface + * + * Used here for a Boot ID, but can be useful for other kernel + * drivers. + ***************************************************************/ + +/* + * Generate random UUID + */ +void generate_random_uuid(unsigned char uuid_out[16]) +{ +	get_random_bytes(uuid_out, 16); +	/* Set UUID version to 4 --- truly random generation */ +	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; +	/* Set the UUID variant to DCE */ +	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; +} +EXPORT_SYMBOL(generate_random_uuid); + +/******************************************************************** + * + * Sysctl interface + * + ********************************************************************/ + +#ifdef CONFIG_SYSCTL + +#include <linux/sysctl.h> + +static int min_read_thresh = 8, min_write_thresh; +static int max_read_thresh = INPUT_POOL_WORDS * 32; +static int max_write_thresh = INPUT_POOL_WORDS * 32; +static char sysctl_bootid[16]; + +/* + * These functions is used to return both the bootid UUID, and random + * UUID.  The difference is in whether table->data is NULL; if it is, + * then a new UUID is generated and returned to the user. + * + * If the user accesses this via the proc interface, it will be returned + * as an ASCII string in the standard UUID format.  If accesses via the + * sysctl system call, it is returned as 16 bytes of binary data. + */ +static int proc_do_uuid(struct ctl_table *table, int write, +			void __user *buffer, size_t *lenp, loff_t *ppos) +{ +	struct ctl_table fake_table; +	unsigned char buf[64], tmp_uuid[16], *uuid; + +	uuid = table->data; +	if (!uuid) { +		uuid = tmp_uuid; +		generate_random_uuid(uuid); +	} else { +		static DEFINE_SPINLOCK(bootid_spinlock); + +		spin_lock(&bootid_spinlock); +		if (!uuid[8]) +			generate_random_uuid(uuid); +		spin_unlock(&bootid_spinlock); +	} + +	sprintf(buf, "%pU", uuid); + +	fake_table.data = buf; +	fake_table.maxlen = sizeof(buf); + +	return proc_dostring(&fake_table, write, buffer, lenp, ppos); +} + +static int sysctl_poolsize = INPUT_POOL_WORDS * 32; +extern struct ctl_table random_table[]; +struct ctl_table random_table[] = { +	{ +		.procname	= "poolsize", +		.data		= &sysctl_poolsize, +		.maxlen		= sizeof(int), +		.mode		= 0444, +		.proc_handler	= proc_dointvec, +	}, +	{ +		.procname	= "entropy_avail", +		.maxlen		= sizeof(int), +		.mode		= 0444, +		.proc_handler	= proc_dointvec, +		.data		= &input_pool.entropy_count, +	}, +	{ +		.procname	= "read_wakeup_threshold", +		.data		= &random_read_wakeup_thresh, +		.maxlen		= sizeof(int), +		.mode		= 0644, +		.proc_handler	= proc_dointvec_minmax, +		.extra1		= &min_read_thresh, +		.extra2		= &max_read_thresh, +	}, +	{ +		.procname	= "write_wakeup_threshold", +		.data		= &random_write_wakeup_thresh, +		.maxlen		= sizeof(int), +		.mode		= 0644, +		.proc_handler	= proc_dointvec_minmax, +		.extra1		= &min_write_thresh, +		.extra2		= &max_write_thresh, +	}, +	{ +		.procname	= "boot_id", +		.data		= &sysctl_bootid, +		.maxlen		= 16, +		.mode		= 0444, +		.proc_handler	= proc_do_uuid, +	}, +	{ +		.procname	= "uuid", +		.maxlen		= 16, +		.mode		= 0444, +		.proc_handler	= proc_do_uuid, +	}, +	{ } +}; +#endif 	/* CONFIG_SYSCTL */ + +static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; + +static int __init random_int_secret_init(void) +{ +	get_random_bytes(random_int_secret, sizeof(random_int_secret)); +	return 0; +} +late_initcall(random_int_secret_init); + +/* + * Get a random word for internal kernel use only. Similar to urandom but + * with the goal of minimal entropy pool depletion. As a result, the random + * value is not cryptographically secure but for several uses the cost of + * depleting entropy is too high + */ +static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); +unsigned int get_random_int(void) +{ +	__u32 *hash; +	unsigned int ret; + +	if (arch_get_random_int(&ret)) +		return ret; + +	hash = get_cpu_var(get_random_int_hash); + +	hash[0] += current->pid + jiffies + get_cycles(); +	md5_transform(hash, random_int_secret); +	ret = hash[0]; +	put_cpu_var(get_random_int_hash); + +	return ret; +} +EXPORT_SYMBOL(get_random_int); + +/* + * randomize_range() returns a start address such that + * + *    [...... <range> .....] + *  start                  end + * + * a <range> with size "len" starting at the return value is inside in the + * area defined by [start, end], but is otherwise randomized. + */ +unsigned long +randomize_range(unsigned long start, unsigned long end, unsigned long len) +{ +	unsigned long range = end - len - start; + +	if (end <= start + len) +		return 0; +	return PAGE_ALIGN(get_random_int() % range + start); +} | 
