1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
using namespace std;
#include "arg_parser.h"
#include <complex>
#include <stdexcept>
using namespace std;
// Convert a string to this-or-that representation.
// Specialization is not the same as instantiation!
// Atox<int> and Atox<double> need to come early,
// because they get used by later things.
template<typename T> struct cvt2 {
static double doit(string const sss){
stringstream parse;
parse.str(sss);
T rslt;
parse >> rslt;
if (parse.fail()) throw invalid_argument("'" + sss + "' isn't a proper " + myTraits<T>::name);
if (parse.eof()) return rslt;
do {
char ch;
parse >> ch;
if (parse.fail()) break;
if (ch == 'k') rslt *= 1024;
else if (ch == 'M') rslt *= 1048576;
else break;
parse >> ws; // without this, we wouldn't know whether we were at EoF
if (!parse.eof()) break;
return rslt; // whew! good.
} while (0);
throw invalid_argument("'" + sss + "' has extraneous verbiage");
return 0; /* should never happen */
}
};
template<typename T> struct helper{
static T convert(string const &arg);
};
template<> struct helper<string> {
static string convert(string const &arg){
return arg;
}
};
template<> struct helper<int> {
static int convert(string const &arg){
return cvt2<int>::doit(arg.c_str());
}
};
template<> struct helper<double> {
static double convert(string const &arg){
if (tolower(arg) == "inf") return Inf;
if (tolower(arg) == "-inf") return -Inf;
return cvt2<double>::doit(arg.c_str());
}
};
// convert to double, then downgrade to float:
template<> struct helper<float> {
static float convert(string const &arg){
return helper<double>::convert(arg);
}
};
template<typename B> struct helper<vector<B> > {
static vector<B> convert(string const &_arg){
string arg(_arg);
vector<B> rslt;
while (arg.length()) {
string::size_type where = arg.find(',');
string word;
if (where == arg.npos) {
word = arg;
arg = "";
} else {
word = arg.substr(0, where);
arg = arg.substr(1+where);
}
rslt.push_back(helper<B>::convert(word));
}
return rslt;
}
};
template<typename B>
string num_from_list(const string arg, B& rslt){
if (arg.length()) {
string::size_type where = arg.find_first_of(", \t");
string word;
if (where == arg.npos) {
rslt = helper<B>::convert(arg);
return "";
} else {
rslt = helper<B>::convert(arg.substr(0, where));
return arg.substr(1+where);
}
}
// should never get here
return arg;
}
template<typename B> struct helper<complex<B> > {
static complex<B> convert(string const &_arg){
string arg(_arg);
B rp(0), ip(0);
arg = num_from_list(arg, rp);
arg = num_from_list(arg, ip);
return complex<B>(rp, ip);
}
};
// This is the interface that ordinary users use.
// The point of all this is that you can perform
// "partial specification" (what I might call re-specialization)
// on classes, but not on functions.
template <typename T>
T Atox(std::string const &str) {
// Just delegate.
return helper<T>::convert(str);
}
//////////////////////////////////
// Various getters.
//+++ fileGetter ....
//ordinary constructor:
fileGetter:: fileGetter(const std::string fname){
file.open(fname.c_str());
}
std::string fileGetter::get(){
std::string str;
for (;;) {
file >> str; // try to read one word
if (file.fail()) return ""; // failed
if (str[0] != '#') return str; // got a comment;
string junk;
getline(file, junk); //throw it away
// go around the loop, read next line
}
}
// beware that neither bad() nor fail() is the opposite of good()
int fileGetter::fail() {
return file.fail();
}
//+++ cmdGetter ....
//ordinary constructor:
cmdGetter::cmdGetter(int const _argc, char const * const * _argv)
: argc(_argc), argv(_argv), wasgood(argc) {}
std::string cmdGetter::get(){
if (argc <= 0) {
wasgood = 0;
return "";
}
wasgood = argc--;
return *argv++;
}
int cmdGetter::fail() {
return !wasgood;
}
// That's all the getters for now.
//////////////////////
string tolower(const string& arg){
string dupe(arg);
for (string::iterator foo = dupe.begin();
foo != dupe.end(); foo++){
*foo = tolower(*foo);
}
return dupe;
}
string arg_parser::xcase(const string& arg){
if (!fold_case) return arg;
return tolower(arg);
}
// Constructor, for reading words from command line:
arg_parser::arg_parser(int const _argc, char const * const * _argv)
: fold_case(0)
{
std::shared_ptr<baseGetter> tmp (new cmdGetter(_argc, _argv));
getsome.push_front(tmp);
}
// Constructor, for reading words from file:
arg_parser::arg_parser(const std::string fname)
: fold_case(0), keyword("(?" "?)"), narg(0)
{
push(fname);
}
void arg_parser::push(const std::string fname){
std::shared_ptr<baseGetter> tmp (new fileGetter(fname));
getsome.push_front(tmp);
}
int arg_parser::fail(){
if (!getsome.size()) return 1; // is this really correct?
return getsome.front()->fail();
}
// see if cur arg is a prefix of patt */
int arg_parser::prefix(const string& kwpatt){
if ((cur.length()==0 && kwpatt.length()!=0)) return 0; // disallow "", unless exact match
if (xcase(cur) != xcase(kwpatt).substr(0, cur.length())) return 0;
keyword = kwpatt;
narg = 0;
return 1;
}
template<class T=std::string> T arg_parser::nextRaw(){
cur = "";
for (;;) {
if (!getsome.size()) {
break;
}
cur += getsome.front()->get();
if (fail()) {
// here if read failed; pop the context
getsome.pop_front();
// if read failed late; return what we have
if (cur.length()) return Atox<T>(cur);
// if read failed early, try again in parent context
continue;
}
size_t len = cur.length();
if (len == 0) break; // zero length, can't have a comma
if (cur[len-1] != ',') break;
// else has a comma, keep reading
}
return Atox<T>(cur);
}
// return next item, assuming it is an argument:
template<class T=std::string> T arg_parser::nextArg(){
if (0) cerr << "next called with narg: " << narg
<<" kw: " << keyword
<< endl;
T rslt = nextRaw<T>();
narg++;
if (fail()) {
ostringstream buf;
buf << "Keyword " << keyword
<< " requires argument #" << narg
<< " of type " << myTraits<T>::name;
throw invalid_argument(buf.str());
}
return rslt;
}
template <typename T>
arg_parser& arg_parser::operator>>(T& val){
val = nextArg<T>();
return *this;
}
// from .h file
// template<typename T> T Atox(std::string const &foo);
// specializations and explicit instantiations:
// The first two lines of this macro help us figure
// out the /name/ of a type.
#define setup(T) \
template <> const char* myTraits<T >::name = #T; /* specialization */ \
template struct myTraits<T >; /* instantiation */ \
template arg_parser& arg_parser::operator>>(T& val); \
template T Atox<T>(std::string const &arg); \
template T arg_parser::nextRaw<T>();
// Last but not least, instantiate the things we are going to need.
// I don't know why the compiler can't do this automatically.
setup(int);
setup(double);
setup(float);
setup(string);
setup(vector<int>);
setup(vector<double>);
setup(complex<double>);
|